References

Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. Nature, 567(7748), 305.
Asmuth, J., Morson, E. M., & Rips, L. J. (2018). Children’s understanding of the natural numbers’ structure. Cognitive Science, 42(6), 1945–1973. https://doi.org/https://doi.org/10.1111/cogs.12615
Babbage, C. (1864). Passages from the life of a philosopher. Longman; Co.
Bakker, J. D. (2024). Applied multivariate statistics in R. Pressbooks.
Beall, C. M. (2006). Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integrative and Comparative Biology, 46(1), 18–24. https://doi.org/10.1093/icb/icj004
Behrouzi, P., & Wit, E. (2017). Detecting epistatic selection with partially observed genotype data using copula graphical models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 68. https://doi.org/10.1111/rssc.12287
Bergstrom, C. T., & West, J. D. (2020). Calling bullshit: The art of skepticism in a data-driven world. Random House.
Björklund, M. (2019). Be careful with your principal components. Evolution, 73(10), 2151–2158. https://doi.org/https://doi.org/10.1111/evo.13835
Broman, K. W., & Woo, K. H. (2018). Data organization in spreadsheets. The American Statistician, 72(1), 2–10. https://doi.org/10.1080/00031305.2017.1375989
Bryan, J. J. (2020). STAT 545: Data wrangling, exploration, and analysis with r. Bookdown. https://stat545.com
Chang, W. (2020). R graphics cookbook: Practical recipes for visualizing data. https://r-graphics.org/
Chari, L., Tara AND Pachter. (2023). The specious art of single-cell genomics. PLOS Computational Biology, 19(8), 1–20. https://doi.org/10.1371/journal.pcbi.1011288
D’Hont, A., Denoeud, F., Aury, J.-M., Baurens, F.-C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., Rouard, M., Da Silva, C., Jabbari, K., Cardi, C., Poulain, J., Souquet, M., Labadie, K., Jourda, C., Lengellé, J., Rodier-Goud, M., … Wincker, P. (2012). The banana (musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217. https://doi.org/10.1038/nature11241
Farine, D. R., & Carter, G. G. (2022). Permutation tests for hypothesis testing with animal social network data: Problems and potential solutions. Methods in Ecology and Evolution, 13(1), 144–156. https://doi.org/https://doi.org/10.1111/2041-210X.13741
Fieberg, J. (2024). Statistics for ecologists: A frequentist and bayesian treatment of modern regression models. University of Minnesota Libraries Publishing. Retrieved from the University of Minnesota Digital Conservancy. https://doi.org/10.24926/9781959870029
Fieberg, J. R., Vitense, K., & Johnson, D. H. (2020). Resampling-based methods for biologists. PeerJ, 8, e9089. https://doi.org/10.7717/peerj.9089
Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture, 33, 503–515.
Freeman, M. (2006). A visual comparison of normal and paranormal distributions. J Epidemiol Community Health, 60(1), 6.
Gelman, A., & Carlin, J. (2017). Some natural solutions to the p-value communication problem—and why they won’t work. Journal of the American Statistical Association, 112(519), 899–901. https://doi.org/10.1080/01621459.2017.1311263
Gould, P. (1981). Letting the data speak for themselves. Annals of the Association of American Geographers, 71(2), 166–176. https://doi.org/https://doi.org/10.1111/j.1467-8306.1981.tb01346.x
Grolemund, G. (2014). Hands-on programming with r: Write your own functions and simulations. " O’Reilly Media, Inc.".
Grolemund, G., & Wickham, H. (2018). R for data science.
Hart, J. D. A., Weiss, M. N., Brent, L. J. N., & Franks, D. W. (2022). Common permutation methods in animal social network analysis do not control for non-independence. Behavioral Ecology and Sociobiology, 76(11), 151.
Healy, J., & McInnes, L. (2024). Uniform manifold approximation and projection. Nature Reviews Methods Primers, 4(1), 82. https://doi.org/10.1038/s43586-024-00363-x
Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press.
Higgins, P. D. R. (2024). Reproducible medical research with r. Bookdown. https://bookdown.org/pdr_higgins/rmrwr/
Ismay, C., & Kim, A. Y. (2019). Statistical inference via data science: A ModernDive into r and the tidyverse. CRC Press.
John, M., Korte, A., & Grimm, D. G. (2024). The benefits of permutation-based genome-wide association studies. Journal of Experimental Botany, 75(17), 5377–5389. https://doi.org/10.1093/jxb/erae280
Kabacoff, R. (2024). Modern data visualization with r. CRC Press.
Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14(7), 641–642. https://doi.org/10.1038/nmeth.4346
Lewis, C. (2024). Data management in large-scale education research. CRC Press.
Marx, V. (2024). Seeing data as t-SNE and UMAP do. Nature Methods, 21(6), 930–933. https://doi.org/10.1038/s41592-024-02301-x
Matthews, R. (2021). The p-value statement, five years on. Significance, 18(2), 16–19. https://doi.org/https://doi.org/10.1111/1740-9713.01505
Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., Stephens, M., & Bustamante, C. D. (2008). Genes mirror geography within europe. Nature, 456(7218), 98–101. https://doi.org/10.1038/nature07331
Novembre, J., & Stephens, M. (2008). Interpreting principal component analyses of spatial population genetic variation. Nature Genetics, 40(5), 646–649. https://doi.org/10.1038/ng.139
Saccenti, E. (2024). A gentle introduction to principal component analysis using tea-pots, dinosaurs, and pizza. Teaching Statistics, 46(1), 38–52. https://doi.org/https://doi.org/10.1111/test.12363
Sandve, A. A. T., Geir Kjetil AND Nekrutenko. (2013). Ten simple rules for reproducible computational research. PLOS Computational Biology, 9(10), 1–4. https://doi.org/10.1371/journal.pcbi.1003285
Sianta, S. A., Moeller, D. A., & Brandvain, Y. (2024). The extent of introgression between incipient <i>clarkia</i> species is determined by temporal environmental variation and mating system. Proceedings of the National Academy of Sciences, 121(12), e2316008121. https://doi.org/10.1073/pnas.2316008121
Sievert, C. (2020). Interactive web-based data visualization with r, plotly, and shiny. Chapman; Hall/CRC.
Suzuki, Y., Endo, M., Cañas, C., Ayora, S., Alonso, J. C., Sugiyama, H., & Takeyasu, K. (2014). Direct analysis of holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Research, 42(11), 7421–7428. https://doi.org/10.1093/nar/gku320
Swierk, L., & Langkilde, T. (2019). Fitness costs of mating with preferred females in a scramble mating system. Behavioral Ecology, 30(3), 658–665. https://doi.org/10.1093/beheco/arz001
Tufte, E. R. (1983). The visual display of quantitative information (p. 197). pub-gp.
Tufte, E. R. (1990). Envisioning information. Graphics Press.
Wainer, H. (2007). The most dangerous equation. American Scientist, 95(3), 249.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
Wattenberg, M., Viégas, F., & Johnson, I. (2016). How to use t-SNE effectively. Distill. https://doi.org/10.23915/distill.00002
Whitlock, M. C., & Schluter, D. (2020). The analysis of biological data (Third). Macmillan.
Wickham, H. (2014b). Tidy data. Journal of Statistical Software, 59(10), 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2014a). Tidy data. Journal of Statistical Software, Articles, 59(10), 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wilke, C. O. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures. O’Reilly Media.
Yi, X., & Latch, E. K. (2022). Nonrandom missing data can bias principal component analysis inference of population genetic structure. Mol Ecol Resour, 22(2), 602–611. https://doi.org/10.1111/1755-0998.13498